124 research outputs found

    Multiple domains in the Crumbs Homolog 2a (Crb2a) protein are required for regulating rod photoreceptor size

    Get PDF
    Background Vertebrate retinal photoreceptors are morphologically complex cells that have two apical regions, the inner segment and the outer segment. The outer segment is a modified cilium and is continuously regenerated throughout life. The molecular and cellular mechanisms that underlie vertebrate photoreceptor morphogenesis and the maintenance of the outer segment are largely unknown. The Crumbs (Crb) complex is a key regulator of apical membrane identity and size in epithelia and in Drosophila photoreceptors. Mutations in the human gene CRUMBS HOMOLOG 1 (CRB1) are associated with early and severe vision loss. Drosophila Crumbs and vertebrate Crb1 and Crumbs homolog 2 (Crb2) proteins are structurally similar, all are single pass transmembrane proteins with a large extracellular domain containing multiple laminin- and EGF-like repeats and a small intracellular domain containing a FERM-binding domain and a PDZ-binding domain. In order to begin to understand the role of the Crb family of proteins in vertebrate photoreceptors we generated stable transgenic zebrafish in which rod photoreceptors overexpress full-length Crb2a protein and several other Crb2a constructs engineered to lack specific domains. Results We examined the localization of Crb2a constructs and their effects on rod morphology. We found that only the full-length Crb2a protein approximated the normal localization of Crb2a protein apical to adherens junctions in the photoreceptor inner segment. Several Crb2a construct proteins localized abnormally to the outer segment and one construct localized abnormally to the cell body. Overexpression of full-length Crb2a greatly increased inner segment size while expression of several other constructs increased outer segment size. Conclusions Our observations suggest that particular domains in Crb2a regulate its localization and thus may regulate its regionalized function. Our results also suggest that the PDZ-binding domain in Crb2a might bring a protein(s) into the Crb complex that alters the function of the FERM-binding domain

    Adversarial Patch Camouflage against Aerial Detection

    Full text link
    Detection of military assets on the ground can be performed by applying deep learning-based object detectors on drone surveillance footage. The traditional way of hiding military assets from sight is camouflage, for example by using camouflage nets. However, large assets like planes or vessels are difficult to conceal by means of traditional camouflage nets. An alternative type of camouflage is the direct misleading of automatic object detectors. Recently, it has been observed that small adversarial changes applied to images of the object can produce erroneous output by deep learning-based detectors. In particular, adversarial attacks have been successfully demonstrated to prohibit person detections in images, requiring a patch with a specific pattern held up in front of the person, thereby essentially camouflaging the person for the detector. Research into this type of patch attacks is still limited and several questions related to the optimal patch configuration remain open. This work makes two contributions. First, we apply patch-based adversarial attacks for the use case of unmanned aerial surveillance, where the patch is laid on top of large military assets, camouflaging them from automatic detectors running over the imagery. The patch can prevent automatic detection of the whole object while only covering a small part of it. Second, we perform several experiments with different patch configurations, varying their size, position, number and saliency. Our results show that adversarial patch attacks form a realistic alternative to traditional camouflage activities, and should therefore be considered in the automated analysis of aerial surveillance imagery.Comment: 9 page

    Ontogeny of iodothyronine deiodinases in human liver

    Get PDF
    The role of the deiodinases D1, D2, and D3 in the tissue-specific and time-dependent regulation of thyroid hormone bioactivity during fetal development has been investigated in animals but little is known about the ontogeny of these enzymes in humans. We analyzed D1, D2, and D3 activities in liver microsomes from 10 fetuses of 15-20 weeks gestation and from 8 apparently

    TNO at TRECVID 2013 : multimedia event detection and instance search

    Get PDF
    We describe the TNO system and the evaluation results for TRECVID 2013 Multimedia Event Detection (MED) and instance search (INS) tasks. The MED system consists of a bag-of-word (BOW) approach with spatial tiling that uses low-level static and dynamic visual features, an audio feature and high-level concepts. Automatic speech recognition (ASR) and optical character recognition (OCR) are not used in the system. In the MED case with 100 example training videos, support-vector machines (SVM) are trained and fused to detect an event in the test set. In the case with 0 example videos, positive and negative concepts are extracted as keywords from the textual event description and events are detected with the high-level concepts. The MED results show that the SIFT keypoint descriptor is the one which contributes best to the results, fusion of multiple low-level features helps to improve the performance, and the textual event-description chain currently performs poorly. The TNO INS system presents a baseline open-source approach using standard SIFT keypoint detection and exhaustive matching. In order to speed up search times for queries a basic map-reduce scheme is presented to be used on a multi-node cluster. Our INS results show above-median results with acceptable search times.This research for the MED submission was performed in the GOOSE project, which is jointly funded by the enabling technology program Adaptive Multi Sensor Networks (AMSN) and the MIST research program of the Dutch Ministry of Defense. The INS submission was partly supported by the MIME project of the creative industries knowledge and innovation network CLICKNL.peer-reviewe

    Genetic Interaction of Centrosomin and Bazooka in Apical Domain Regulation in Drosophila Photoreceptor

    Get PDF
    Cell polarity genes including Crumbs (Crb) and Par complexes are essential for controlling photoreceptor morphogenesis. Among the Crb and Par complexes, Bazooka (Baz, Par-3 homolog) acts as a nodal component for other cell polarity proteins. Therefore, finding other genes interacting with Baz will help us to understand the cell polarity genes' role in photoreceptor morphogenesis. mutation on developing eyes to determine its role in photoreceptor morphogenesis. We found that Cnn is dispensable for retinal differentiation in eye imaginal discs during the larval stage. However, photoreceptors deficient in Cnn display dramatic morphogenesis defects including the mislocalization of Crumbs (Crb) and Bazooka (Baz) during mid-stage pupal eye development, suggesting that Cnn is specifically required for photoreceptor morphogenesis during pupal eye development. This role of Cnn in apical domain modulation was further supported by Cnn's gain-of-function phenotype. Cnn overexpression in photoreceptors caused the expansion of the apical Crb membrane domain, Baz and adherens junctions (AJs). photoreceptor

    GFAP-Driven GFP Expression in Activated Mouse Muller Glial Cells Aligning Retinal Blood Vessels Following Intravitreal Injection of AAV2/6 Vectors

    Get PDF
    Background: Muller cell gliosis occurs in various retinal pathologies regardless of the underlying cellular defect. Because activated Muller glial cells span the entire retina and align areas of injury, they are ideal targets for therapeutic strategies, including gene therapy.Methodology/Principal Findings: We used adeno-associated viral AAV2/6 vectors to transduce mouse retinas. The transduction pattern of AAV2/6 was investigated by studying expression of the green fluorescent protein (GFP) transgene using scanning-laser ophthalmoscopy and immuno-histochemistry. AAV2/6 vectors transduced mouse Muller glial cells aligning the retinal blood vessels. However, the transduction capacity was hindered by the inner limiting membrane (ILM) and besides Muller glial cells, several other inner retinal cell types were transduced. To obtain Muller glial cell-specific transgene expression, the cytomegalovirus (CMV) promoter was replaced by the glial fibrillary acidic protein (GFAP) promoter. Specificity and activation of the GFAP promoter was tested in a mouse model for retinal gliosis. Mice deficient for Crumbs homologue 1 (CRB1) develop gliosis after light exposure. Light exposure of Crb1(-/-) retinas transduced with AAV2/6-GFAP-GFP induced GFP expression restricted to activated Muller glial cells aligning retinal blood vessels.Conclusions/Significance: Our experiments indicate that AAV2 vectors carrying the GFAP promoter are a promising tool for specific expression of transgenes in activated glial cells

    NOD2 regulates hematopoietic cell function during graft-versus-host disease

    Get PDF
    Nucleotide-binding oligomerization domain 2 (NOD2) polymorphisms are independent risk factors for Crohn's disease and graft-versus-host disease (GVHD). In Crohn's disease, the proinflammatory state resulting from NOD2 mutations have been associated with a loss of antibacterial function of enterocytes such as paneth cells. NOD2 has not been studied in experimental allogeneic bone marrow transplantation (allo-BMT). Using chimeric recipients with NOD2−/− hematopoietic cells, we demonstrate that NOD2 deficiency in host hematopoietic cells exacerbates GVHD. We found that proliferation and activation of donor T cells was enhanced in NOD-deficient allo-BMT recipients, suggesting that NOD2 plays a role in the regulation of host antigen-presenting cells (APCs). Next, we used bone marrow chimeras in an experimental colitis model and observed again that NOD2 deficiency in the hematopoietic cells results in increased intestinal inflammation. We conclude that NOD2 regulates the development of GVHD through its inhibitory effect on host APC function

    A common allele in RPGRIP1L is a modifier of retinal degeneration in ciliopathies

    Get PDF
    Despite rapid advances in the identification of genes involved in disease, the predictive power of the genotype remains limited, in part owing to poorly understood effects of second-site modifiers. Here we demonstrate that a polymorphic coding variant of RPGRIP1L (retinitis pigmentosa GTPase regulator-interacting protein-1 like), a ciliary gene mutated in Meckel-Gruber (MKS) and Joubert (JBTS) syndromes, is associated with the development of retinal degeneration in individuals with ciliopathies caused by mutations in other genes. As part of our resequencing efforts of the ciliary proteome, we identified several putative loss-of-function RPGRIP1L mutations, including one common variant, A229T. Multiple genetic lines of evidence showed this allele to be associated with photoreceptor loss in ciliopathies. Moreover, we show that RPGRIP1L interacts biochemically with RPGR, loss of which causes retinal degeneration, and that the Thr229-encoded protein significantly compromises this interaction. Our data represent an example of modification of a discrete phenotype of syndromic disease and highlight the importance of a multifaceted approach for the discovery of modifier alleles of intermediate frequency and effect.This work was supported by grants R01EY007961 from the National Eye Institute (H.K. and A.S.), R01HD04260 from the National Institute of Child Health and Development (N.K.), R01DK072301, R01DK075972 (N.K.), R01DK068306, R01DK064614, R01DK069274 (F.H.), NRSA fellowship F32 DK079541 (E.E.D.) from the National Institute of Diabetes, Digestive and Kidney disorders, Intramural program of NEI (A.S.), the Macular Vision Research Foundation (N.K.), the Foundation for Fighting Blindness (H.K., S.S.B., A.S. and N.K.), the Foundation for Fighting Blindness Canada (R.K.K.), Le Fonds de la recherche en sante du Québec (FRSQ) (R.K.K.), Research to Prevent Blindness (A.S.), Harold Falls Collegiate Professorship (A.S.), the Midwest Eye Banks and Transplantation Center (H.K.), the Searle Scholars Program (M.A.B.), the Deutsche Forschungsgemeinschaft (DFG grant BE 3910/4-1; C.B.) the UK Medical Research Council (grant number G0700073; C.A.J.), NIHR Biomedical Research Centre for Ophthalmology (S.S.B.) and EU-GENORET Grant LSHG-CT-2005-512036 (S.S.B.). F.H. is an investigator of the Howard Hughes Medical Institute (HHMI) and a Doris Duke Distinguished Clinical Scientist (DDCF)
    corecore